SO2 emissions from basaltic eruptions, and the excess sulfur issue
نویسندگان
چکیده
[1] Volcanic SO2 can affect the Earth’s environment. Where no direct measurements of SO2 in the atmosphere are available, a petrologic method of assessing sulfur release from the magma must be used. However, in studies of arcderived eruptions, satellite-based measurements of SO2 emissions using Total Ozone Mapping Spectrometer (TOMS) data are orders of magnitude greater than those calculated petrologically, implying that a separate S-rich gas phase in the magma chamber may be responsible for the excess sulfur. We test whether this applies in other settings. For Icelandic and Hawaiian basalts we find that petrologic SO2 values are comparable to measurements of SO2 by TOMS. Thus, for non-arc basalts, the petrologic method gives reliable estimates of SO2 released. The implied absence of excess sulfur in non-arc basaltic magmas is a reflection of source magma conditions, notably lower fO2 and volatile contents than arc magmas, inhibiting the exsolution of a S-rich gas prior to eruption.
منابع مشابه
Satellite Remote Sensing of Atmospheric So2: Volcanic Eruptions and Anthropogenic Emissions
In this article, we present satellite data analysis of atmospheric Sulfur Dioxide (SO2) from volcanic eruptions and anthropogenic activities. Data from Global Ozone Monitoring Experiment (GOME) on board ERS-2 for the years 1996 to 2002 is analyzed using a DOAS based algorithm with the aim of retrieving SO2 Slant Column Densities (SCDs). Difficulties in the retrieval of SO2 SCDs due to instrumen...
متن کاملSulfur dioxide emissions in Iran and environmental impacts of sulfur recovery plant in Tabriz Oil Refinery
Background: Combustion of fossil fuels contributes to sulfur dioxide (SO2) emissions. To deal with this issue, the government of Iran has appointed the oil refineries to upgrade their installations and produce high quality fuels. Thus, this study investigated the status of SO2 emissions in Iran and the capability of advanced technologies to control SO2 emissions. Methods: The status of SO2 em...
متن کاملStratospheric sulfur and its implications for radiative forcing simulated by the chemistry climate model EMAC
Multiyear simulations with the atmospheric chemistry general circulation model EMAC with a microphysical modal aerosol module at high vertical resolution demonstrate that the sulfur gases COS and SO2, the latter from low-latitude and midlatitude volcanic eruptions, predominantly control the formation of stratospheric aerosol. Marine dimethyl sulfide (DMS) and other SO2 sources, including strong...
متن کاملA technical and economic assessment of fuel oil hydrotreating technology for steam power plant SO2 and NOx emissions control
This work presents a simulation approach to the design and economic evaluation of fuel oil hydrotreating processes for the control of SO2 and NOx emission in an Iranian steam power plant. The percent of fuel oil desulphurization was estimated from the SO2 emissions standards for power plants. Based on two different scenarios according to (I) European and (II) Iranian standards, the design and s...
متن کاملSatellite-based global volcanic SO2 emissions and sulfate direct radiative forcing during 2005–2012
An 8 year volcanic SO2 emission inventory for 2005–2012 is obtained based on satellite measurements of SO2 from OMI (Ozone Monitoring Instrument) and ancillary information from the Global Volcanism Program. It includes contributions from global volcanic eruptions and from eight persistently degassing volcanoes in the tropics. It shows significant differences in the estimate of SO2 amount and in...
متن کامل